~—A-PARALLEL LISP STNGLATORCU) STANFORD UNIV CA BEPT OF
COMPUTER SCIENCE J S WEENING MAY 88 STRN-CS-BB 1206
NBBD39-84-C-8211

272

.

c.
==

L , zs
s = v “ui i
o FE ke
g 141 2 :
i WE= e

, .

v.:‘ .

o 125 |1-4 wr.e

——

. v v B v - - - - o - w » w

IRRKSD o O g D v X o v e TN
:}:\0 W a“' u..‘.'.:.‘ﬂ 0‘ t 5\ .0 t' u":t:::;".'% .. :rm : R%% g.u:;‘q"'q‘ oﬁ",.c‘ |\\‘:l:::. ":';‘:'. '..:::::‘. 3! ':'t

||
|H
.l i b, 4 . n
0‘! n.' %v'p
‘ T. e Q' “::“ .'t“

0'1 . ‘
' i'; l' i'q 1 ' ':"' ..
W) b‘ l‘. S l“ L) l‘

G'c'h ‘
A "
‘unbil.l' "”‘!

e o e ':'v:";:r ‘:“‘0
J 1

USH T
l. a N . oty .I‘:‘D'u,i‘m‘!

May 1988 Report No. STAN-CS-88-1206
BIG rwc vurd

A Parallel Lisp Simulator

by

Joseph S. Weening

AD-A195 460

Department of Computer Science

Stanford University
Stanford, California 94305

DTIC

ELECTE

DISTRIBUTION STATEMENT A | -~ -

Approved for public release;
Distribution Unlimited

NNy
‘t?»'l.»r'h".:

} IS\ 0
shatntnsadl

_AS85:5-CATION OF '-- § PAGt

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704.0188
Exp Date Jjun JO. 1986

1a REPORT SECURITY CLASSIFICATION
unclassified

b RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release:

2o DECLASSIFICATION/ DOWNGRADING SCHEDULE

Distribution Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

STAN-CS-88-1206

NAME OF PERFORMING ORGANIZATION

gl

6b OF#.CE SYMBOL
(if appiicable)

Ta. NAME OF MONITORING ORGANIZATION

Computer Science Department

7b. ADDRESS (City, State, and 2IP Code)

_Qu""'—
)
- -

. ADORESS (Gty, Scate, and ZIP Code)

Stanford University
Stanford, CA 94305

Ve
-

——

8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

(If applicable)

NAME OF ‘UNDINGASPONSORING
ORGANIZATION

DARPA
ADORESS (City, State, and 2IP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. | NO. NO

WORX UNIT
1400 Wilson Blvd. ACCESSION NO
Arlington, VA 22209
TITLE (Inclucte Security Classification)

A Parallel Lisp Simulator

12 PERSONAL AUTHOR(S)
Joseph S. Weening

13a TYPE OF REPORT

14. DATE OF REPORT (Year, Month, Day) |'S PAGE COUNT
May 1988 27

13b TIME COVERED
FROM T0

16 SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBLECT TERMS (Continue on reverse if necessary and identfy by biock number)

GROUP SUB-GROUP

T e e e

-

19 ABSTRACT (Continue on reverse if necessary and 1dentify by block number)

> CSIM is a simulator for parallel Lisp, based on a continuation passing interpreter. It
models a shared-memory multiprocessor executing programs written in Common Lisp, extended
with several primitives for creating and controlling processes. This paper describes the
structare of the simulator, measures its performa}nce, and gn\ves/an example of its use with

a parallel Lisp progran. N P! L, ‘ ‘ = ; . ~
. - il R _',; R \,\v~"" : HE .

& AN K M DR

20 JISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

J uncLassIFIEDAUNLIMITED (] SAME AS RPT
128 NAME OF RESPONSIBLE INDIVIOUAL

] oTiC USERS

22b. TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

83 APR edition may be used until exhausted
Ail other editions are obsolete.

DD FORM 1473, 8amar SECURITY CLASSIFICATION OF THIS PAGE

$,% St 700,
IR e

R T S T N K

8
l !)J.I, 'O. .l. ‘I.. .|§." " ’ " ’|. .'|“ ..h..h""..'. ‘..' ...

i A Parallel Lisp Simulator

Joseph S. Weening®

S0 Abstract

CsIM is a simulator for parallel Lisp, based on a continuation passing interpreter. It
models a shared-memory multiprocessor executing programs written in Common Lisp,
extended with several primitives for creating and controlling processes. This paper
W, describes the structure of the simulator, measures its performance, and gives an example
i of its use with a parallel Lisp program.

N *Research supported by Defense Advanced Research Projects Agency contract N00039-84-C-0211 and a
Wi fellowship from the Fannie and John Hertz Foundation. The views and conclusions presented in this docu-

ment are those of the author anu sould not be interpreted as representing official policies, either expressed
AN or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

AT ,‘\' a A 's

BNUNILANon NI 0 0 0 A
R U DAL NN oy W e, ‘1’ 'l’ I " 4’.3‘1’0 A .’ .L Ky '4 ARG .'a' e S .,t ﬁc o’,.o' I‘Qlt‘ ,:0 :.:,

(AN E
AN

1 Introduction

This paper describes a simulator for parallel Lisp. called CsiMm, The ~C™ stands for contin-
uation passing. which is the basic programming techuique that the simulator uses to model
multiprocessing. Csiy is written in Common Lisp and runs on several systems. It provides
the following facilities:

o In the absence of an actual multiprocessing system. CsiM can be used as a testhed
for parallel Lisp programs.

e The user can investigate the effects of varying parameters in a parallel environment.
such as number of processors, cost of process creation, and contention for resources.
Using CsIM, one can modify these parameters beyond the ranges in currently available
hardware.

e CsiM allows metering and performance debugging of programs without modifving
them or changing their execution environment. This is easier to do with a simulator
than on a real machine.

CsiM was used extensively by the Qlisp project at Stanford until an initial implementation
of Qlisp became available. and continues to be a valuable tool in our study of parallel Lisp
programming,.

2 The parallel machine model

Our machine model is a MIMD (multiple-instruction, multiple-data) computer with iden-
tical processors and uniform access shared memory. In such a system all data objects are
stored in a single address space, and access to any location in the address space by any
processor takes roughly the same amount of time. These features combine Lo ensure that
there is no benefit or penalty for storing data in any particular location or running code on
any particular processor.

Although it is currently difficult to build a computer that is faithful to this model and
has mode than a few dozen processors, there is an emerging consensus that shared memory
is an appropriate model given the current state of the programming art. Development of
shared-memory multiprocessors therefore continues, and our results should be applicable
to such machines with large numbers of processors if they emerge, as well as the currently
available class of small- and medium-scale mulitiprocessors.

Another major assumption we make is that control of parallelism is explicit: program-
mers can indicate what computations are to be performed in parallel, while the defaunlt is
sequential execution. This is not to preclude program-transformation tools that may detect
parallelisin in ordinary (sequential) programs and produce parallel programs; our parallel
Lisp can serve as the targei langunage for such tools.

In our programming model, processes are created at run time, and the decision to create
a process may be conditional. We will not say much here about how such decisions may be
usefully made: this paper is mainly a description of the implementation of our simulator.

Several proposals for changes to Lisp to accomodate such a programming model have

been made. such as Qlisp [3], Multilisp [5], and MultiScheme [7]. While these dialects of

Lisp differ in syntax and to some extent in the semantic power of the features they provide,

‘AVu 24

Wt t ‘ { R ANKR ¢
DR AOR IR LIS R, f. SORDB A o"‘o,"s" M0 N.o !p 1" i.o. o ,o.

wilat ‘ Special

n' .n" .i. .l

n/ o

ty Codes
and/or

|

()
KR

£ w e -

theyv all agree with tlie shared-mewmory philosophy that we have described. In CsiM we

K provide support for several of the Qlisp and Multilisp forms that we have found useful in
3‘ writing parallel programs.

': The goal of the Qlisp project at Stanford is to produce a compiler and run-time system
‘: for parallel Lisp. that will be used on an actual multiprocessor for serious applications. CsiM,
- however. is an interpreter running on a single processor and modeling a multiprocessor. In
e this approach there is an inherent tradeoff between the speed of the simulation and its
fo degree of realism. We have chosen a middle ground that we believe will accurately model
..’r‘ the issues in parallel programming that we want to investigate.

i

'!

,E; 3 A continuation passing Lisp interpreter

N

;' As an introduction to the style in which CsiM is written, we describe here a simple con-
. tinnation passing interpreter for a subset of Common Lisp. Readers familiar with the
) continuation passing stvle of programming may wish to skip this section.

::’ Writing a Lisp interpreter in Lisp is ecasier than the equivalent task in most other lan-

:: guages. for several reasons. First. the representation of Lisp programs as Lisp data greatly
" simplifies syntactic analysis. More importantly. the interpreter can be “metacircular,” using
q parts of the environment in which it runs to simulate the same constructs in the language
' being interpreted. This lets us focus on the parts of the evaluation process that are of
interest. (See (1] for a discussion of metacircular interpreters in Scheme, a simple dialect of

'; Lisp. Qur examples will all be based on Common Lisp.)

::: The main function of the interpreter is eval, which takes a form (a Lisp expression

: representing a program) and an environment (a data structure representing the values of

:;i variables). and returns the value of the form in the environment. It usually looks something

::E like this:

::' (defun eval (form env)

w (cond ((symbolp form)

. (lookup-variable form env))

',:'. ((atom form)

::: form)

t ((special-form-p form)

:: ce)

- (t (appl, (first form)

o (eval-list (rest form))))))

3

3 (defun eval-list (formlist env)

K (if (null formlist)

A nil

(cons (eval (first form) env)

:: (eval-list (rest form) env))))

y This program is not yet complete. In place of the *...” must be inserted code to handle

P all of Lisp’s special forms. We also need a definition of the representation of environments,
and we need to define the functions lookup-variable and apply. These involve details

;;; that are unimportant at this point.

K

:: 2

X

L

!‘: !

4 |

.5‘

!'~.-"«

..'\ SOOUOANEINE AN A ;s
LN/ AN 'y, \ ot ‘v, Wity s OO IO ‘,‘l‘, ,‘ct l!.i'r‘ X .'. ‘k) !...t‘. “.‘ AL D‘|’|. 't‘g ".h&l‘..b.:: it '. ol

The above interpreter is a functional program, and its runtime behavior follows the
patteru of function calls and returns in the program being interpreted. For a subsct of
Lisp restricted to functional constructs, such an interpreter is fine. However, it becomes
increasingly hard to maintain the simple structure of the interpreter as we add Common
Lisp’s special forms for sequencing (progn), iteration (tagbody/go or do). and non-local
retucn {catch/throw and block/return~from), as well as the parallel constructs that we

. will introduce.

1 Using continuations allows us to expand the range of constructs that the interpreter can

:.'. handle with a manageable increase in the complexity of the program. C'ontinuations, which
::: : were originally mvented to define the semantics of sequential programming constructs (see
::1 (1] and {10]). were shown in [9] and related papers to be a very convenient programming
.:: tool as well.

o A continuation is a function that represents “the rest of the programm™ as the interpreter
(progresses. The interpreter’s job changes from “evaluate a form in an environnwent and
r return the result” to “evaluate a forin in an environment and call a continuation with the
’-‘ result.” Using continuation passing style,! our example becomes:

Wy

:.' (defun eval (form env cont)

o (cond ((symbolp form)

(funcall cont (lookup-variable form env))) Q

::: ((atom form)

N (funcall cont form))

’:.{ ((special-form-p form)

oY S
f,] (t (eval-list (rest form) env

b #’ (lambda (args)

:1.: (apply (first form) args cont))))))

W

o (defun eval-list (formlist env cont)

) (if (null formlist)

& (funcall cont nil)

_\; (eval (first form) env

A #’(lambda (first-value)

‘: (eval-list (rest formlist) env

i #’ (lambda (rest-values)

%) (funcall cont (cons first-value

:i rest-values))))))))

1

:j: It is important to notice that the functions defined ahove by lambda expressions are clo-

Y

sures: they contain free references to variables that are lexically bound outside the lambda
e CXPressions.

K In a continuation passing program such as this one, each function that is called with a
K continuation as an argument ends by calling another function, passing it a new continuation.
(]) " . .

" If the interpreter is run using an ordinary stack-based Lisp svstem, the stack will grow quite
» L) \ > 1

1)

W "The reader familiar with continuation passing style will notice that some parts of this code do not pass
[] continnations: for instance the lookup-variable function. We do this to improve the performance of the
[X interpreter by creating fewer nnnecessary closures,

!]

%

i

L)

i '}

)

N

)

LS

s

"

*4’&‘

7y
.Lo '» 2t ‘.'n‘. a..l .| .0".0".0 .' Wt

D 1 ,
'g' "\‘:'. .

' "’: "?'- ot n i .‘:h XN !':'. b "', ' Hl.' ninettyning :ﬁu'.

i %

l.q_;l 3.:‘) | \Q)

large, and any program doing a non-trivial amount of work will cause the system to run
out of memory. To avoid this, the Lisp system in which the interpreter is run must detect
tail recursion and cause stack space to be reused whenever such a call is encountered.
Wiiile coding the interpreter, the programmer must ensure that all functions called with
continuations are tail-recursive.

Let us go through a simple example toillustrate how the continuation passing interpreter
works. Suppose we want to evaluate the expression (+ x 3) and print the result. Previously.
we would have said

(print (eval ’(+ x 3) *top-level-envx))

where *top-level-env* is used to hold the “top-level” environment of values assigned to
global variables. Let us assume that it associates x with the value 4. With the continuation
passing interpreter, we say

(eval ’(+ x 3) *top-level-env* #’print)

This call to eval examines the form (+ x 3). It is not an atom or a special form, so it
results in a call to

(eval-list ’(x 3) *top-level-envx
#’(lambda (args) (apply #’+ args #’print)))

The quoted expressions in the above call and the rest of this example are used to represent
the values that will actually be passed. The original continuation #’print has become part
of a new continuation (the lambda expression above). Eval-list now calls

(eval ’x *top-level-env*
#’ (lambda (first-value)

(eval-list ’(3) *top-level-envx

#’ (lambda (rest-values)
(funcall #’(lambda (args)
(apply #’+ args #’print))
(cons first-value
rest-values))))))

which has constructed a new continuation that contains the old one buried inside two levels
of closures! But now we have called eval with an atom, and it calls

(lookup-value ’x *top-level-envx)

to find the value associated w1th x in *top-level-envx. This will return 4. Then eval
will call

(funcall #’(lambda (first-value)
(eval-list ’(3) *top-level-env*
#’ (lambda (rest-values)
(funcall #’(lambda (args)
(apply #’+ args #’print))
(cons first~value rest-values)))))
4)

Ly ¢) G
AN sty ety

() O 1%
ST AN vt

N "ﬂ}ﬂ" ‘“\”1 ﬂ“ﬂ"ﬂ"ﬁ h"

(R)
0‘.'."....}

This becomes

(eval-list ’(3) xtop-level-envx
#’(lambda (rest-values)
(funcall #’(lambda (args) (apply #’+ args #’print))
(cons 4 rest-values))))

s0 we are making some progress. After several more steps similar to those above, the
interpreter will call

(funcall #°’(lambda (args) (apply #’+ args #’print))
(cons 4 *(3)))

and finallv
(apply #’+ °(4 3) #’print)

The continuation passing version of apply (which we haven’t yet defined) will call the
continuation #’print with the result of applying the function #’+ to the argument list
*(4 3), so we will finally call (print 7) and see our answer.

4 An interpreter for Common Lisp

We now extend the simple continuation passing interpreter to one that accepts almost all of
Common Lisp. This will be the basis of our parallel Lisp simulator. To avoid discussing var-
ious unimportant details, the code described in the next few sections is often a simplification
of what actually appears in CsiM.

4.1 Environments

Symbols in Common Lisp programs refer to values based on the rules of scope and extent
as described in [8], ch. 5. While it would be possible to pass in a single env variable
all of the information needed to resolve any symbol reference, CsiM divides the kinds of
references into two classes, lexical and dynamic, and uses variables lex-env and dyn-env
to store different parts of the environment. The pragmatic reason for this separation is that
a call to a new function defined at “top level,” which is a frequent occurrence, uses none
of the lexical information present in its calling environment, but retains all of the dvnamic
environment.
Lexical environments are represented by structures with four components:

e variables that are lexically bound, for example as function parameters or by let.
What is actually stored is an association list (alist) of (variable . value) pairs. Since
lexical binding is the default in Common Lisp, most variable references will be found
liere.

e functions defined by flet or labels. This slot contains an alist that associates each
name with a lexical closure (see definition below), since lexically bound functions can
have free variable references.

AL ANTXTIOCRAN TN K PaS T 0t 0 08 g Vg C g h e e, Ve Vi 87 0y 1V 1T 0 0T 19y sVp i Yl o Wty) ORS00
it Nl Y, ‘!(‘t’:"l AR ?o,o!.:u“_.,\f.:tfytlf,:c'::;f":“q'.s'.fa\.fo‘!;fl‘:!e?,fn'.fc':tai,f;'.‘.l,ﬁt...t"“".!_.0" K J..... .o'f \'\.’0 R

1+

2 \F
)
o
00 e blocks defined by block. Also contains an alist, which is described in more detail in
‘. .
sy section 4.,
it'a
gy e tagbodies defined by tagbody (or implicitly bv prog, do, etc.) This slot contains a
§ . . .
::v,: list each of whose members is the entire body of a tagbody form.
l“
:: Lexical closures are represented by structures with two components:
&)
Iy
t’::. ¢ function, represented by a lambda expression.
v)
it . . .
v:.:.n ¢ environment. a lexical environment.
v
Gy . . .
Jen Dynamic environments are represented by structures with three components:
>4
’ "
e
4 . oy . .
Sty e variables that are “special,” and hence dynamically bound (an alist).
1 4
?,z'.' ¢ catches, information about catch forms that have been entered and not yet exited.
‘!::‘l
b ¢ unwinds, representing unwind-protect forms that are pending.
!' A
|‘3
,‘.:, A new environment is created whenever there is a new piece of information to add to an
LA
°® existing environment. For example. to interpret a let form that binds lexical variables, we
% create a new lexical environment structure, copy the slots that have not changed from the
4 e
f,*'n: existing environment (functions, blocks, tagbodies), and store in the variables slot an
Ty,
‘;I.‘ alist that begins with the variables being bound and eventually shares the list structure
X . . - . .
;0":t of the variables in the original environment. We crcate a new environment, rather than
1 . o . .
R change the slots in the existing environment structure, because the extent of each binding
A in Lisp is finite and the binding must at some point be “undone;” the best way to do this
::: is to preserve the environment existing before the binding.
e Sometimes we modify the data structures contained in an environment without changing
DN the environment itself. lor example, to interpret setq we tind a (variable . value) pair in 1
. . . . Crs
e an environiaent and destructively modify the value part ot this cons-cell.
3
x

4.2 The global environment

CsiM does not use the environment structures just described to implement Common Lisp’s
“global environment,” consisting of values and functions assigned to unbound special vari-

X ables (symbol-value and symbol-function). When simulating a reference or assignment
B to an unbound symbol’s value, we use symbol-value, which lets the simulated program
,"j:. share the global environment of the simulator.
::.’, This makes using CsiM more convenient, because assignments to global variables can be
".::: made in the ordinary Lisp environment and then be seen by simulated code, or vice versa.
W) Doing this for function definitions would cause difficulties, however (since CsiM provides
» interpreted definitions for many of the predefined Common Lisp functions), so these are
:::: stored on the symbol’s property list.
‘EE: 4.3 Function application

v
" Let us now look further into CsiM’s apply function, which has been mentioned several
I3 times but not yet defined. The role of apply is to take a function object, a list of argument
;,:.':g
Lt .
) 0
g
'n‘

AT RO A AL AC AN AL GOOAGACANALO0NN0 OO vH OO i RPN
. e .,‘»,,,-1,5"_.'»‘;?‘.:1,‘«;‘," it "."'-..“.":?‘QQQ.:..‘?Q!‘B * I.% 20 .‘|I.‘.l"..‘5 ‘.. 0..| ‘.“‘. 0 "’i .

@
;:::O
a:.:: valunes, a lexical and dynamic environment, and a continuation. and to call the continuation
;," with the result of the function applied to the arguments.
. The function objects that apply allows as its first argument fall into the following classes:
::: I. Svibols naming primitive Common Lisp functions. These functions are called directiy
‘::: by the simulator.?
+
':E: . 2. Svinbols naming Common Lisp functions that inust be treated specially. For example,
R an instance of eval in code being simulated should resuit in a call to C'sin’s eval,
;;:‘ not the eval in the underlying Common Lisp.
;z::: 3. Symbols naming functions whose definitions should be interpreted. CsiMm finds the
:o::' definition for such a function on the symbol’s property list, where it will have been
::"3 stored as a lambda expression by CSIM’'s version of defun, and applies it in a null
! lexical environment and the current dynamic environment.
"' 1. Explicit 1ambda expressions. These are applied in tlie current lexical and dynamic
:' . environment.
E: 5. Closures. These are represented by structures containing both a lambda expression
; and a lexical environment in which to apply it. The current dynamic environment is
ey used.
b
::t Applying a lambda expression is fairly straightforward. We create new environments
*,t':'. ' to contain the bindings of the lambda expression’s variables. (Since some of them may
;:'.:: be special variables we may create both a new lexical environment and a new dynamic
f environnient.) In the new environments, we associate the variables with the corresponding
KN values taken from the argument list to apply. Finally, we evaluate the body of the 1ambda
! expression in the new environments. Since its value should be passed to the continuation
" that was given to apply, we use this continuation in the call to eval for the body. A
%: skeleton of the code for this is:
1Y)
2 (let ({(new-lex-env ...)
i;:.. (new-dyn-env ...))
E::;: (eval <body-of-lambda-expr> new-lex-env new-dyn-env cont))
'::.o, In the actual simulator, the application of 1lambda expressions is more complicated because
P we interpret Common Lisp’s &optional, &rest and &aux parameters, and avoid creating
¥ new lexical or dynamic environments when not necessary.
e :
:::: 4.4 Special forms
::E: As an example of how continuations simplify the simulation of Common Lisp special forms,
' let us look at the implementation of block and return-from. In a program such as
o (block b1
e (foo (block b2
R (if p (return-from b1 7) 3))))
‘::' *The dynamic environment in which these calls take place will not correspond to the simulated dynamic
environment. The user of CSIM mnust expect dynamic binding of variables to affect only references that are
p: ! interpreted by the simulator.
R
) 7
2
@

R ORI, A W Vv
R I A A AR AN AL WMH@ZH“

ROUOOOUGOUGOCOUCOLIOOGON OO
R R N A K S

) [% M\

if the value of p is nil, the inner block will return 3 and the outer block will compute
(foo 3). Butif pis not nil, the return-from form will cause 7 to be immediately returned
from the outer block and foo will not be called. The symbol b1 in the return-from matches
the name of the outer block because it is lexically contained within that block, but if the
inner block were also named b1 then the return-from would match the inner block’s nane.

Each lexical environment includes a blocks slot. To interpret a block form, we create
a new lexical environment: in the blocks slot of this environment we put a list whose first
element represents ‘he block we are interpreting; the rest of the list is the blocks slot from
the previous environment. With the block name we associate the continuation for the block,
because this represents what we want to do with the value returned by the block. whether
it comes from the last form in the block or is supplied by a return-from.

The code to interpret a block form is therefore

(defun eval-block (form lex-env dyn-env cont)
(let ({new-lex-env (copy-lex-env lex-env)))
(push (cons (block-name form) cont)
(lex-env-blocks new-lex-env))
(eval (block-body form) new-lex~env dyn-env cont)))

and the code to interpret a return-from form is3
(defun eval-return-from (form lex-env-dyn-env cont)
(let ((find-block (assoc (return-block-name form)
(lex-env-blocks lex-env))))
(if find-block
(eval (return-expr form) lex-env dyn-env
(cdr find-block))
(error "No block for ~S" form))))

When return-from is seen, the interpreter looks through the list of blocks in the current
lexical environment, which will have the innermost blocks listed first. It examines block
names (using assoc) until it finds one matching the name in the return-from. The contin-
uation that is associated with this block name is the one to which we want to pass the return
value. Therefore we end with a (tail-recursive) call to eval using this continuation. Note
that the cont argument to eval-return-from is ignored. This is because return-from
never returns a value to its caller; it always passes a value to some other continuation.

If no return-from is encountered in the course of evaluating the body of a block, then
the evaluation of (block~body block) will eventually call cont with a value, as expected.

Catch and throw are simulated in a very similar way. Catch saves its tag and continu-
ation in a new dynamic environment, and throw lonks for the appropriate continuation by
matching its tag to those saved in its dynamic environment.

Unwind-protect is not hard to handle, although it must be coded quite carefully. The
main idea is that every time an unwind-protect form is evaluated, a new dvnamic envi-
ronment is created; its unwinds slot contains a list with the cleanup forms and the lexical
and dynamic environments in which they must be executed. Upon normal return through

3The code as shown here is incomplete, because it doesn’t handle unwind-protect forms that may have
to be evaluated as a result of a return-from. CSIM does handle this case.

'.i 00
.,

(IR (A] SOOGS0 ONO
DS D }g Yol LA
W ”-\l’!t“".‘“ﬁz.‘it‘ '."ﬁt""‘.‘“."!"‘Q’G‘w".;"‘.-?t‘:ti'q‘l“?.'

U > (1 = ’ O ta i Ak AL AL AL ol SaR Rol tok 2uf BeR _ |

an unwind-protect these {orms are evaluated in a straightforward way. A non-local exit
{caused by throw. go or return-from) causes a change from the current dyvuamic envi-

ronment to a previous dynamic environment. When this happens. we evaluate all of the

"o cleanup forms associated with environments between the one we are leaving and the one we
::‘, are 1‘(‘1\1|'nin.gt' to, in the pr()!)(‘r .()l'd(‘]". - ‘ . -
: Another important special form is setq. For the moment, the following code will suffice
;»,:;u . to simulate (setq var value):
R,
) (defun eval-setq (form lex-env dyn-env cont)
|:‘:. (eval (third form) lex-env dyn-env
:‘% %’ (lambda (value)
he's (modify-binding (second form) value lex-env dyn-env)
:..',:: (funcall cont value))))
{._ Modify-binding finds the association-list pair for the variable in the appropriate environ-
‘,\ ment and changes the value. Iu section 6 we vwill make some additions to this code.
'v Most of the remaining special forms of Common Lisp perform various operations on
u environments: they are straightforward to implement so we omit them from the description
h‘.r here.
o
"'3 4.5 Multiple values
E; Common Lisp’s multiple values are supported by Csim. We have previously defined a
e continuation to be a function of one variable, and simulated returning a value from a
. function call by calling a continuation with the value that is returned. To allow multiple
{ values to be returned, we let a continuation be called with any number of arguments.
::: Instead of a function with one parameter, we let each continuation be a function with a
¥:," &rest paraincter. When the continuation is called, the &rest parameter variable is bound
fa:,' to a list of the argument values. It is then straightforward either to use just the first element
:-:: of this list when only one value is expected, or to use the whole list in the places that allow
J multiple values.
:,';: The initial implementation of C'siM was done without supporting multiple values. When
.'v{. it came time to add this feature (because some programs that we wanted to simulate used
;::: multiple values), it took very little effort to do so.
'-::‘0 We will not mention multiple values in the remainder of this paper since in general they
. are not relevant to issues of parallelism.
3t
:::‘:'(4.6 Timing statistics
)
:; Up to now, we have not made Csim do anything more than the Lisp system that it is built on.
A, The first feature that we will add is the ability to measure and record “simulated” execution
o time. This meets one of our initial goals. which is to reflect the timing of computation on
;:;" an actual or hypothetical machine.
logt We use a global variable *time*, which is initialized to 0 at the start of each “top-level™
W call to the interpreter. Whenever CsiM performs an operation that reflects work in the
Yot simulated machine, it adds an appropriate amount to *time*. (Section 8.1 explains how
the basic timings are chosen.) When the computation is done, we can see how much work
~;:;. our simulation corresponded to.
R
o 9
w ‘

n5.0% N 50y LT LR g A DR EZVER AT CURRY AV ARy
KA A’-A‘ '0‘ " o‘.n.nna'o .l' ' !U:‘Joﬂ'u‘:'a‘.. KX el 4’ Lo /] DTN M‘

.‘; |
)
‘.. »
':- A benefit of the simulator is that we can gather some statistics that would be hard
]
i to obtain in a real machine without affecting the timings. For example. we keep track of
T how much work is spent in each function. in addition to the total work done. This cannot
I
ww generally be done on standard hardware without, for instance. having the compiler generate
a) . e - I
N, additional code at each function entrv and exit: this extra code will affect the statistics.
! e . P .
4 Worse, from our point of view, it will affect the relative timing of activity in a parallel
iy’ . ™
il rrocessor and possibly change the amount of speedup for the program.
" 1 L . & ’ prog
3 C'siM keeps track of time spent in functions in three different ways. The first is the time
‘ ‘ P \
X spent in each function exclusive of the functions that it calis. These timings will add up to
:c: the total time spent in the program.
l:'.. A more useful statistic is obtained by counting all of the computation done in a function,
t
n::: including functions that it calis. When a function recursively calls itself (either directly or
" with calls to other functions intervening), we must decide whether to charge it only once, or
¥
N once for eacl call. Csim actually does both. because a different useful measure is obtained
v, . . ~ . ..
z;,:c each way. These are the second and third sets of function timings.
;i;: T'he information needed to compute these timings is stored in extra slots in each dynamic
i:;l‘ environment structure. One slot contains the name of the current function being simulated;
‘0 it is used to charge time to just that function. The second slot contains a list of all function
R g j
) calls currently in progress. The ihird slot contains such a list, but with each function
‘,:"l appearing only once.
‘_s:' When a basic operation is simulated, CSIM adds its simulated time to the time for the
i current function, and the times for functions in the two lists. For each of the three statistics
Pt
i:ae there is a hash table indexed by the function’s name and containing its accumulated time.
oW After a top-level form has been simulated, CsiM optionally prints the timings. The
! P Y p g
" timinegs for functions in which recursive calls are counted more than once are not useful by
ad o A
,0;.: themselves (some may be more than 100% of the total simulated time), but when divided
:“e by the number of calls to the function, they give the average time spent in that function.
.;o For example, suppose we have the sequence of calls
l!s’
P FOO — FOO — FOO — BAR,
s
U
:.;a: in which cach call to FOO takes 10 steps before calling the next FOO or calling BAR, and the
::1'.: call to BAR takes 40 steps. Thus the total computation takes 70 steps. The first statistic
r.",:u would show 30 steps spent in FOO and 40 steps spent in BAR.
The second statistic would show 70 steps spent in FOO (since all the work is done within
:a}': the toplevel call to F0O). and 40 steps spent in BAR. The third statistic would show an
" average of 60 steps spent in F0O, since 70 steps are charged to the first call, 60 to the
‘“I o p p g ’
\:: second. and 50 to the third. It would also show 40 steps spent in BAR.
) B . . . e g
g::' Section 9 will describe how we use these statistics.
)
L
LY .
i 5 Parallel Lisp constructs
"
w,: Parallel Lisp programs are executed on a shared memory multiprocessor by means of a
1 . s . .
:';', process quene, a data structure containing processes. which represent computations that
> may be performed in parallel by the processors in the system. (Although we refer to it as
W a “quenc.” another data structure may prove to be a better choice.)
t‘:'
“‘,.
o",’ 10
Yy
WY
A
@

St e G e R L Ol gy b Ay oroo':‘ Rhehrete hy 0 “‘ QRADL N
“;‘ R DUOUOUE 2.0 .‘ .,s),04 0-!..! 0 i)‘C‘l’.. l,‘d 0 i'!’..‘..gc'l an‘ fho .‘.t' M "l ;.‘.""’ '»0.‘ . :..’,'.::9’.!‘:5~”‘:,~:.')

P T T T R I P P T T R T T P N o W R N P o N W oW W T W BT WP R T A P T WOy WY T s o o

\

o

v . |

) Processors that are idle will remove processes from the quene and execute them: a
:::: running process may generate new processes and put them on the queue. When a process
' finishes, the processor running it becomes idle again and will look for another process to
it run. A process may also wait for an event, causing it to be suspended and making its
,;ﬂ processor idle.

;l’:|‘ There have been several proposed extensions to Lisp to support this model of compu-
.’n::‘ . tation. C'siMm provides the following constructs:

A0

\": I. Qlisp's qlet (both regular and eager forms) and qlambda. described in [3].

::j:' ' 2. Multilisp’s future, dfuture and touch, defined in [5].

i

,:EE: 3. Simple test-and-set locks (busy waiting).

)
;,": We do not vet support the extensions to catch and throw defined by Qlisp. (Their incaning
“‘-“. is currently being revised.)

’.:|’ Multilisp’s future and dfuture, and the eager form of Qlisp’s qlet, use a special kind of
:‘: data object called a “future” (or sometimes a “promise” or “placeholder”), which represents
:n::' the undetermined value of an expression that is being computed in another process. Lisp
e operations that do not depend on the values of their operands (in a well-defined sense)
treat a future just as any other data object. A future can be passed as an argument to a
2: ‘ function, returned as a value, assigned to a variable, or stored in a data structure; none of
oy these operations depend on its value.

it « ey . . -
vy Most of the primitive operations of Common Lisp do depend on the values of their
b \ operands, however, so whenever one of these primitives is called the future is said to be
! touched. This causes one of two things to happen: either the process computing the future’s
',:6 value has finished, in which case the value is available to the process touching the future,
:". or the process has not finished; then the touching process will be suspended, and when the
‘nS value is available it may be resumed.

:::.: The use of futures is not without some cost, especially on processor architectures not
; designed to support them. The primitives that need to touch their arguments must all
;.é'; perform additional work even when those arguments are not futures (just to check whether
'::.u thev are), and every reference to a future costs more, often even after its value has been
::: determined. CsiM. by assigning varying costs to these operations, can indicate how much
;:!‘ of a performance penalty this is.

" Locks are provided as a low-level synchronization primitive for two reasons: first, they
are better suited for certain parallel algorithms than futures (particularly for “in-place”
:.:t' algorithms that destructively modify data structures); and they are needed to write the
!:;: scheduler, as described in section 6.2.

i

":':‘ 5.1 Scope and extent issues

. The definitions of scope and extent for variables and other objects in Common Lisp require
:.' some reinterpretation in parallel Lisp. This was forseen in [8, p. 38], where Steele writes:
;' Behind the assertion that dynamic extents nest properly is the assumption that

'& there is only one program or process. Common Lisp does not address the prob- ‘
® lems of multiprogramming (timesharing) or multiprocessing (more than one ac-

we tive processor) within a single Lisp environment.

K

x':: 11

o:.'

@

o

i"

RO Ot S s S e D s ot T IS TN TS T T AT QRO N P R N s LY ST ATRY -
- "*‘-‘5‘4‘3‘n"’?’&‘:"‘!‘G‘"i.!'n‘-“t hah t‘.»‘\‘!h’.t’!.& ¥y !':‘!‘ R Iih N !’\‘&a b %, 3‘?‘-.‘”‘!"‘?‘2‘?’;"'&"?.!‘n‘. S04 ettt kK n‘. ! !0,.!01 ‘w

‘,;:::: We have chosen the following policies:
fy 1‘!

X oy
yr' '} o Lexical variable references behave the same as in Common Lisp, even if the binding

O of a variable is in a different process from the reference. Thus, in

]

::i:::"

»s::;'. (qlet t ((x (let ((v 5)) (foo v)))

3
KX (y (et ((v 4)) (bar v))))

Vi

A)

o

,:1:::0 there is no relation between the binding of v in the two processes created by glet,

:c;::v' while in

N}

KR

' (let ((v 8))

i (qlet t ((x (foo v))

ety (y (bar v)))
ey L)

e

11"!(9
® the two references to v are both to the binding established by the let. If one of the

R processes used setq to change the value of v, the new value would be seen in the other

"9‘.“\. .

o process (and in the body of the qlet).

fy) [}

:;:;::: If the parameter t in qlet is changed to ’eager, then the process computing the body

el may return from the qlet even though the processes computing the bindings are still

. running. In this case, the variable v must remain accessible to these processes. (The

e same situation can occur if future is used.)

» ¥ q"

B CsiM has no problem implementing this, because it uses list structure to store lexical

RN . : ..

N environments and never explicitly deallocates them. (They are garbage collected once
Tk they are no longer needed.) An efficient parallel Lisp implementation might avoid
' , allocating environments when possible, but will have to use a lexical closure to allow

":’,:i the passing of bindings from a parent process to a child in this manner.

-?", V

RS |

.;y:::a e The dynamic environment of a process cannot be changed by other processes, even
A3

:'.:;h when a binding is undone in a process. If we change our first example to
o S

L

oy (defvar v)

;:o::: (qlet t ((x (let ((v 5)) (foo v)))

a::’}t (y (et ((v 4)) (bar v))))

L]

9:;',; then the two bindings of v are independent, even though they may occur concurrently.

:::5‘ The “shallow binding” technique used by many Lisp implementations does not do the

;.; A right thing in this case; each process would try to store its new value for v into a

‘:::: shared global value cell. Deep binding, on the other hand, does work correctly if each

process is provided with its own stack for bindings, and inherits the bindings of its

KRN parent process. However, in the case

)

,"r}:::'

i}

‘f:ri‘,' 12

.“g‘\

-f.‘a?

L

10050 T Sty ey RN () W b gl
B2t L Y DR tfn p't o'm’*n .ﬂs"'“' 't‘tn‘t‘m NI 'ﬂm‘ "-‘.

MRS ' 'a'

iy (defvar v)
RO (let ((v 8))
;T (qlet ’eager ((x (foo v))

0 s (y (bar v)))
W Y

45,V I we want the binding of v to be accessible to the processes created by the qlet even
X after the qlet returns. This is a problem, since the process that established the
binding now will undo it. In a stack-based implewtentation of dynamic binding, even
.,v.,: : with deep binding, this will not work. CsiM uses list structure to implement its
).'\‘ dynamic environments, just as with lexical environments, and hence does what we
N want.

R 6 Simulating the parallel machine

1] Our main concern in simulating a multiprocessor is that we accurately model the order of
M reads and writes to the shared memory. Although parallel programs that share data gen-
Jual erally use synchronization constructs such as futures or locks, we want to produce realistic
results for programs that make unsynchronized memory references. (Among other henefits,
this will help us find bugs in programs that do not use correct synchronization.)

N In sections 3 and 4 we described how our single-processor interpreter keeps track of its
=.|:$ progress using continuations. This takes the place of the “control stack” in an ordinary
M interpreter, and consequently it is very easy to capture the interpreter’s state. This design
lets us have an interpreter for each processor in the simulated machine, and switch between
) them whenever we want,

.::% We do this by introducing a new kind of continuation, which we call a process contin-
uation. Process continuations are closures with no parameters; their purpose is solely to
O capture the lexical environment of the interpreter at a point where we wish to switch the
} simulation to a new processor, so that we can later resume the current processor’s simula-
R tion. (In [11], continuations created by catch in the then-current version of Scheme were
K used for much the same purposes as our process continuations.)

KKK For example, the code to handle setq that was presented in section 4.4 is modified in
the parallel simulator to

I (defun eval-setq (form lex-env dyn-env cont)

:"; (eval (third form) lex-env dyn-env

W #’ (lambda (value)

Wk (switch-processors

X0 #’(lambda ()

o (modify-binding (second form) value
,.'f lex-env dyn-env)

" (funcall cont value))))))

where switch-processors is a function that does what we have been describing. Its ar-
gument is a process continuation that captures the necessary parts of the simulator’s state
X in its free variables. Calling the process continuation will resume the interpretation of the

4,‘::‘. 13

R0 s' RN e l Q N 1) | c .‘1 , 0 ,‘t 2404 XK CE0HC

w'h,a. O R .ll.l .'
et SN SR " o

68 e 0
tsh! 1'~ A"I.*‘ .. .D" "

. " I'.‘. .n.

(
i'. ‘.‘I‘.'l 33 .?:l . l ‘0"

)
N
a4
9
‘l;.
]
v 4
WF
.1‘,4
e X
e setq form. but the switch-processors function can defer this call until the appropriate
¢ .
o time to do so.
' Process waiting is also simnulated using process continuations. When a process needs to
\‘... wait for an event (such as a future’s value being determined, or to call a qlambda process
\ . L .
i closure), the simulator stores a process continuation representing the work to be done after
.i‘ﬁ I >
J;‘: that event happens, in a data structure associated with the waiting process. Calling the
4t . .
1:1,* process continuation resumes the suspended process.
R
¥
X 6.1 Processors
":l
:b,: The variable *number-of-processorsx*is used at the beginning of each top-level evaluation
» . .) . .
:.:i to determine how many processors to simulate. Each processor is alwayvs running a process,
e possibly an “idle” process. A processor is represented by a data structure containing its
f current process and its current simulated time.
s The simulated times are the key to deciding when to switch the simulation from one
1 .
A rocessor to another. As long as CsiM performs operations that can have no effect on pro-
Y .
'.,’o: cessors other than the current one, it continues to simulate the same processor, incrementing
::',: that processor’s time.? The only operations by which one processor can affect others are
those that read or write data in shared memory. To make sure that these operations are
e done in the correct order, CsiM enforces the following rule:
.s":.
L) .
;:::; Any operation that can affect other processors must be done when the current
:ﬂ: processor’s time is the lowest of any in the system.
[
A . .
b To see why this works, consider two processors, P; and P,, that perform shared-memory
Fay operations at times t; and ¢,. with t; < t;. Without following the rule above, we might run
5.0 r .
.l:: the simulation of P, beyond time t; before we have simulated P; at time #;. This would
& . R)
:,:t be wrong: for instance, if P;’s operation is a write and P;’s is a read of the same memory
i
o location, then we would not read the correct value. (We call this a write/read conflict.
"'
! Read/write or write/write conflicts cause similar problems.) However, because of the above
M 3 . »
i rule this cannot happen. When we see that P, is about to perform a memory operation at
¥
) time 19, we stop its simulation. We do not restart it until has the lowest simulation time of
l.'.
'.t:,: any processor (or is equal to others with the same time). At that point, P, must have been
stb simulated past time t;, because if it hasn’t been, then its time is less than #; and ¢; < o,
;‘.‘ 1, ’ 1 1 =)
e so P,’s time isn’t the lowest.
o What this does is serialize all of the shared-memory operations that can cause one
§ y
al processor to affect another. We do this for unsynchronized memory operations (i.e., ordinary
1]
Ay reads and writes) as well as synchronous operations such as acquiring locks. This ensures
“
::g: that our simulation corresponds to the order of operations that would occur in a real
] . v oy .
;\0:: multiprocessor. However, we do not place any restrictions on shared-memory operations
(s . .
® performed at the exact same time by two processors. The results of these are unpredictable.
X Serialization is implemented by means of a priority queue (called the “run queue™) that
i:n:: holds the structures representing processors, sorted in increasing order of simulation time.
A
):::, When the interpreter is about to perform a shared memory operation (for instance, at the
;ll:.: call to switch-processors above), it updates the data structures for the current process
).
*Actually, it increments the global variable *time* and will store its value back into the processor’s
'\:;' structnre before switching to a new processor.
M,
:-l'g
,:‘|'
K 14
(W
N
.)
@
A
I?"

LS e s e U U e 1,800 00 4 U O 0 0 P 1% R a8 0
: "'A"l. KN AN) Ja ‘.‘\?5“!’.&"'2.!"‘."“'.‘v."!.',!gkh‘,!’_,q"?v._\\:!",‘ U 'A‘.g"'.' '.

K T AN O O DL WA
SOUIBII IO AN MO LN o AN D"‘::""‘ N, :f"u'i'.'h‘a'v

W
'wk :

SN

L

LN

_:;é

Y _ :
fn:'.: and processor and inserts the processor into the run queue. Then. the processor with the
::a:: lowest simulation time is removed from the run queue and its simulation is resumed.
g" C'siM’s serialization method was chosen because it is easily to implement and prove
o correct. Since CsIM does not itself attempt to do work in parallel, this is a reasonable
\ { 1} . oy A
;.' choice. Serialization would become a bottleneck if we were to try to speed up Csim by
='\. having it simulate several processors at the same time, and we would probably need to use
? N . . a . .
1 S a more sophisticated mechanism, such as the “time warp” system described in [G].
g

)

ol 6.2 The scheduler

[N] :

" . , .

:;::: As described at the beginning of section 5, we assume there is a queue or some other data
:z::: structure to hold processes that are ready to run. We call the code that maintains this data
AN structure the scheduler, since it decides in what order the processes will run.
{ Scheduling algorithms are one of our objects of study, and we do not want to build one
";s into the design of our simulator. Instead, we want to make it possible for a user of the
;," simulator to write a scheduler in ordinary Lisp code (not in continuation passing style).
9 . . N .
:;;0, CsiM models the execution of the scheduler by simulating it in the same way as other Lisp

A/

::'.‘ code.

' P . .

T'he scheduler consists of two functions:
-
P)
,;. ‘ e add-process is called whenever a new process is created. It is given a process as its
;.' argument, and inserts it into whatever queue or other data structure is being used to
;.:: schedule processes.

:.,!,c) .
’ o get-process is called whenever a processor is idle. It finds a process to run and
W returns it.

Q.y:

1l . . C1y . .
::w:: When a processor becomes idle, the simulator creates a temporary “idle” process in which
;0:: the call to get-process takes place. (Since this call is interpreted, there must be a process
ol for it to run in.) Upon return from get-process, the new process replaces the idle process.
‘.,2‘ Currently, CsiM gives the user a choice of two schedulers: FIFO and LIFO. These both
¢: i organize the runnable processes into a single list; their difference is in which process is
'.. chosen by get-process. The FIFO (“first-in, first-out”) scheduler takes the process that
Oy has been in the queue for the longest time, while the LIFO (“last in, first out”) scheduler
D0 takes the most recent process.

® LIFO scheduling, while perhaps counterintuitive at first, has been found to often perform
'.:i‘, better than FIFO scheduling. Halstead [5] discusses this in some detail, and argues for an
::;.: “unfair” scheduling policy as a way to reduce memory usage.

"n::: LIFO scheduling also allows some optimizations in process management.

) .
o} :

‘ 1. When a process is about to create a child process and immediately wait for its result,
v as in the (qlet t ...) construct of Qlisp, it can perform an ordinary function call
:.:: instead, since there is no reason to put a process on the queue, make the processor
ot:: become idle, and have it then remove the same process right away.

AN

" . 3 . ., .

':': 2. When a process finishes and has a list of waiting processes to wake up, its processor
3. . .
™Y can put all but one of them on the process queue and run the last one itself, since it
::}o otherwise would become idle and immediately choose the last process that it added.
K

«:"

L]

9‘|. 15

a’:.

vy

@

.

ﬁ"

A

SOEDNED B KRS ADND R 0 WV
R O R S Y, e S Ry Gantliadingn ‘.o"

e

o

3,40

‘:~:": CsiM has a flag that is turned on by the LIFO scheduler, and turned off by the FIFQ
g;,:: scheduler, which enables these optimizations. This interaction between the scheduler and
v the simulator is needed because creation and termination of processes are simulated directly,
",:;n not interpreted as the scheduler is.

:.' The FIFO and LIFO schedulers just described both suffer from potential contention for
v: ' the various locks on the process queue needed to ensure correct operation. We are therefore
;‘ ; looking into the use of more sophisticated schedulers that distribute the runnable processes
t.a

among several queues. In many cases a single-queue scheduler is sufficient, since our goal is
to create processes of a large enough granularity so that scheduling does not happen very

W often. As the number of processors we simulate increases, however, the process size must
:’:.;s.: also increase to avoid contention, and this may reduce the potential speedup of a program.

]
::::f:'
S 6.3 Processes
\q’ﬂ' A process is represented by a structure containing its current process continuation, a flag
: to indicate whether it has terminated, and a list of other processes that are waiting for it (if
&# it has not yet terminated). When interpreting a form that creates a process, such as qlet
1} Y or future, the simulator calls a function create-process defined as {ollows:
XN

@ (defun create-process (form lex-env dyn-env new-cont cont)
:"?‘ (let ((new-proc (make-proc
::" :pcont #'!(lambda ()
Sl (eval form lex-env dyn-env
;t, new-cont)))))
4 (call-user-function ’add-process (list new-proc)
",;.:', #’ (lambda (v)
\;::: (funcall cont new-proc)))))
::;S:: The form argument is what the new process will evaluate, using lex-env and dyn-env
.f:;'_‘!! as its initial environment. New-cont is the continuation that the new process will call
D) with the value of form. Cont is the continuation for the parent process. The call to
.:;;.o call-user-function tells CSiM to interpret the definition of add-process with the new
j:|:o:. process as an argument, and pass the result to the specified continuation. This continuation
>:::::' returns the new process to the parent, which may have a need to refer to it. (For instance,
:l:,:u qlet may wait for the new process to finish.)
" The continuation new-cont called by the new process is always written to end with a
::;.;:‘ call to the function finish-process, which wakes up any processes that have decided to
j;::! wait for the given process to terminate. It does this by calling add-process on each of
,::,' these. After this, the process is done. Its processor becomes idle and will try to find a
::;:,. new process. If we are using the LIFO scheduler described in the previous section, then
A if there were waiting processes we switch directly to one of them, avoiding a call to both
v add-process and get-process.
"
f:;:"sg 6.4 Process closures

U
:':f:: Qlisp defines a new type of object called a process closure, which provides both concurrency
‘u l'l . . . o,

and synchronization. A call to a process closure may proceed without the caller waiting for

f::.:; the result (but only when the call is in a position where the result value is ignored). Calls
B
. 16
@

et Y T b gt e St S SR a b G et sttt sin !

)

;?.:. to each process closure are serialized: if one happens while a previous call is still in progress,
::»,:: it is put on a queue.

s At present, C!siM implemients ouly the synchronization features of process closures. To
.,;:; do this. we represent a process closure by a structure containing a (first-in, fir‘st—out) quene
ft::.: of waiting processes and a closure. When a process closure is called, the calling process is
.::':‘ added to the queue, 1 it is the only one there, it proceeds by calling the closure. Otherwise,
A:'::: , its processor becomes idle and calls get-process as described above.

s When the call to the closure returns, the simulator removes the current process from
:'13! the process closure’s queue. If there are now other processes waiting on the quene, it calls
1::',5 add-process to resume the first one.

i

A
;'t"f‘ 7 Miscellaneous details

I » o o o
;.‘,z In the previous sections, we omitted certain details in order to simplify the presentation.
;:::», This section explains several of them.

‘0,."

0

_l"‘l

° 7.1 Use of symbols

T

v '_ﬁ We find it convenient to have the interpreter share symbols with its underlying Common
:'. \ Lisp environment. As mentioned in section 4.2, the values of unbound special variables are
‘:’ shared between the simulator and the program being simulated. Other information about
""' i symbols is kept on their property lists, using the following property names:

-

;ﬁ:: o cexpr is the lambda expression for an interpreted function definition. CsiM’s version
sl‘ of defun sets the value of this property.

o)

'::.t' ¢ csubris a function to handle a special form. It is called by CsiM’s eval to handle such
,{:" a for‘m, w.ith the form, the current lexical and dynamic environments,.and the. current
),"‘::. continuation as arguments. The defcsubr macro defines such a function. This makes
:::,:' the code more modular, since we do not need to enumerate all of the special forms
::" inside eval.

“ e esubr is a function to handle a primitive Lisp function that cannot be called directly,
) such as apply, because its operation needs to be simulated. The arguments to an
kK ‘) esubr are evaluated normally before the function is called.

N

iy e cinfois a list whose car is the number of time units that the simulator should charge
o to interpret the function or special form named by this symbol, and whose cdr indi-
«:',‘; cates which arguments to the function may be passed without being touched. These
;o: are both meant mainly for functions that are interpreted by calling the Common Lisp
;l,;: functions directly. Functions that are simulated (using either cexpr or csubr def-
\:’ initions} do not make use of the cdr part of this property. For interpreted cexpr
a definitions, if this property is present it overrides the normal time charged for a func-
\:;2: tion call.

o

g 17

B

-y

o

o lr.\gn,,:!ntﬁh"_f«:‘:t‘,‘.?,qht‘h'.!.:l",:,?»t.:?:\:f:‘:bf,:o:,:’:‘ A,' :,’...o. ,.. .'N ‘.‘."a' .‘:,::c ;,“1. '..,0.0'0, ,.' “. ,..o, 0.:&;;.,.

P . o — - - — e
i

o

M

e

o

.

r“:

. (1

"y : "

=y 7.2 Preprocessing of definitions

"

. L .
Joh Csiat has its own version of defun. which stores the function definition of a symbol as its
,“'c cexpr property. Belore doing so. it preprocesses the {unction definition to perform the
i following transformations.

00 g

9..

&

;‘.& I. Macros are expanded wherever they are recognized. This avoids having to expand
) . .

o, them in the interpreter.

'l’\‘

' ™~

oy 2. Parallel Lisp constrncts (qlet, future, etc.) are converted to a form that assigns a
N unique tag to each process creation point. For example. if a function foo contains
[. [

:: several calls to future and the second one is (future expr) then it is converted to
W (future-tagged foo2 expr). When future-tagged is interpreted, it is treated just
..‘-'. . . . M ™

re like future except that the tag is assigned to the new process that is created. CsiM
L keeps track of how much time is spent in eacl call to a process with a given tag. With
[X) Lo R . § . .
.":' this information the user can decide whether the processes created at each point in
o the program are of a reasonable size.

’. .

"

], .
o [t is possible for a macro to be encountered in interpreted code even after preprocessing;
® if this ocenrs. Csiy expands it and then destructively replaces the original form by the
" expansion. This avoids the overliead of expanding the same expression each time it is
i

.l" encountered.

A . . - . . .

O Many of the basic Common Lisp forms described in [8] are macros. Unfortunately,
A different implementations of Common Lisp expand these forms in different ways, causing
.
ot noticeable changes in the times charged by the simulator. Even more of a problem is that the
N oxpansions may use implementation-specific functions. Because of this, CsiM must include
MR C

I timing information for functions that are not part of standard Common Lisp, particularly
%) : J
¥ . .

g those resulting from expansions of setf.

:'., C'siM also has a special version of defstruct, so that it can perform preprocessing to
e define timing information for the accessor, constructor, copier and predicate functions of

i . "

o the structure being defined.

"

.'.’

i . ey

o 7.3 Interpreted primitives

o

» -
e, Many Common Lisp functions may be simulated by calling them directly with the values
A I A A

o of their argument expressions. CsiM must be careful not to pass futures to these functions,
W - . . .

iy becanse they are not part of Common Lisp. Therefore in most cases it “touches” arguments
? . . . - «

‘,cfp: before calling a Common Lisp function. This would have to be done anyway in a Lisp system
[} . . .
;,o' that nses futures, except for functions such as cons that do not depend on the values of their
.:, arguments; f{or those cases we have included a mechanism (the cinfo property described

O .

Y above) to avoid unnecessary touches.

o:;. Some functions cannot be called directly, however, because they reference objects other
]

.::n than their direct arguments, and these may be futures. Consider, for instance, the cddr
:u:, function {cdr applied twice). Even if we ensure that the argument to cddr is not a future,
7y

'y it may be a cons cell whose cdr is a future, so calling Common Lisp’s cddr would result
l“] g |

. in an error. ('sIM uses an interpreted definition of cddr and most other such functions for
A this reason.

4

X

e

49:

XN 1R

LN

»‘.

9

@

..0 .00 AR
ODRICAGICHRRN)

|I| 'l I i)
."'.‘ TN

O 3 AL %)
ORI SRR

0:',-
%yt
o
atl’a
L
X ‘y
o,
MY
:::: Another class of functions that cannot be called directly is those whose running time
RIN depends on the size (or some other properties) of their input. The equal and length
I proj I q g
i’\.“ . . N . . e - .
functions are examples of this. CsIM uses interpreted definitions of these functions also.
MY
v
‘'t '.i
:O:r:: 7.4 Top level
"
[}
gk i
;.::) [o interact with the user, C'sIM provides a read-eval-print loop. but the top-level evaluator
s does a number of special things. It begins by initializing the processor data structures
*_J_ and clearing all of the statistics counters. Then it creates an initial process whose process
‘t:' : continuation is set to call CsiM’s eval with the form to be evaluated. This process is
I rassed to initialization code for the schieduler, which sets it up as ready to run, with no
Ky ! i .
el other processes in the system. One of the processors is then chosen to begin the simulation.
y [. l g
.{' While running, CsiM keeps track of the number of running processes. A process is said
4 to be running between the time it is created and the time it terminates. except when it
N
s is suspended to wait for an event (such as a future being determined). If the number of
i p g
N running processes drops to zero, we halt the simulation and return to top level. Usually this
ol g1 ! 1 ;
hed happens when the top-level process returns a value (which is then printed) and terminates.
e Py P P I
:;:::. But there may still be other running processes at this point, because of futures that have
"‘" not yet been determined, or for other reasons. In this case, we continue simulation until
L the number of running processes is zero.
iy
"\ 7.5 Memory allocation and garbage collection
::g Csinm calls the underlying Common Lisp functions (cons etc.) to simulate memory allocation
{ by the program we are interpreting, and assumes that each such call takes a constant amount
i:; . of time in a parallel machine. A real parallel Lisp can achieve this by giving each processor
)
W a private pool of free cells to allocate from, so this is realistic.
*'-i": CsiM does not model garbage collection at all, except to estimate its eventual cost and
"‘4": include this in the simulated times for cons and other allocation functions. It assumes that
E the garbage collector will achieve the same amount of parallelism as the rest of the program.
] g g p prog
Y Parallel garbage collection is an important problem and there are many apvroaches
::::, currently under investigation. However, we view this area of research as orthogonal to our
"'v',‘: main interests, which are modelling the execution of processes and investigating partitioning
! . .
A and scheduling algorithms.
"".'
]
:»'} 8 Accuracy and performance
I'.
)
’
4::;: ' To produce meaningful results, CsIM’s timings must approximate those of an actual ma-
}
410:‘ chine. And to be usable, the simulator must be fairly fast. This section describes the results
s . .
~ of some experiments done to see how well it meets these goals.
g
18l . .
‘,eﬁs’ 8.1 Accuracy of simulated times
3
?,
E N . - C g . .
tht, To derive timings for basic Lisp operations, we compiled and ran a set of small test programs.
il g p op p prog
e Each consisted of a loop performing a primitive Lisp operation; one of these was a “no-op”
® to measure the overhead of the loop code. Subtracting the time for the “no-op” test from
Y the time of cach other test, and dividing by the number of iterations of the loop. indicated
) g N 1
!:‘.’
1
R0 19
N
g
@

OO OOODOOOROUCOHCOOUODRNOU) A0 0 | 0 0 O, AR g
N R L R A N R R T RN R Y '.\"fo’ﬂ'w"n N MOOTNCK

q .

how much time was spent in each function being tested. These tests were performed on a
single processor of an Alliant FX/8 running Lucid Common Lisp® and scaled to a set of
small integer values. Here are some of these values:

Lexical var. ref. 1
CDR {
+ 2
EQ 3
Function call 4
Special var. ref. 5
CONS 15
* 17

We then ran several of the Gabriel benchmarks [2], first as ordinary compiled programs and
then using CsiM with the timings derived from the test programs. The table below shows,
for each program, the compiled time in seconds, the simulated time in units of 10¢ steps,
and the ratio of simulated time to compiled time. The compiled times are the average of
five runs of each program.

Compiled | Simulated
Time Time Ratio
boyer 22.06 27.74 1.3
browse 19.63 41.02 2.1
ctak 1.56 3.26 2.1
dderiv 6.99 7.72 1.1
deriv 5.96 7.15 1.2
destructive 2.18 7.89 3.6
div test-1 2.63 4.22 1.6
div test-2 3.44 3.62 1.1
stak 6.09 2.39 0.4
tak 0.53 1.11 2.1
takl 2.04 8.39 4.1
takr 0.72 1.11 1.5

The accuracy of our simulator is reflected by how close the ratios are to each other. They
are not as close as we might like, but they are all of the same general order of magnitude.
To account for the differences, we can provide several explanations:

e CsiM’s interpreter sometimes performs different operations than the compiled code.
For example, CsiM does not optimize the evaluation of common subexpressions, and
charges for each reference to a variable, whereas in compiled code some of these might
be eliminated. The most extreme ratios each have an explanation of this sort:

— destructive contains do loops that the compiler can optimize, while CsIM treats
them as ordinary loops performing index computation and conditional branches.

®Actually, we used a version of the Qlisp system in development on the Alliant, running on a single
processor. In this Lisp, memory allocation and special variable references are somewhat slower than a Lisp
designed for only one processor would be.

20

re
0
::»: — stak uses special variables. which are quite slow on the version ol Lisp that we
::: used. The compiled code uses deep binding, which takes a varying amount of
;"‘ time per reference, while Csim charges a constant amount of time.
‘i:.; — takl does a lot of tail-recursive function calling. which is optimized by the com-
*:: piler.
R
,:’, o (CsIM pretends that garbage collection time is a constant multiple of the time spent in
s allocation functions, by including it in the cost of these functions. This is not accurate;
= a copying garbage collector takes time proportional to the amount of memory in use
;:: . when it is called, which may be large or small depending on the program being tested.
N
:?: 8.2 Speed of the simulator
’:' Next we will compare the speed of CsiM itself with the speed of compiled code that it is
'." simulating. The computation of function timing statistics (see section 4.6) was disabled
R during these tests; turning it on slows CsIM by an extra factor of 2 or more. We also ran
:l: the programs through the Lucid Common Lisp interpreter for comparison.
%;‘f. The times in the table below are all in seconds. The CsiM runtimes are the average
R of three runs, except for bover and browse which were only run once. The runtimes for
L] interpreted and compiled code are the average of five runs.
T
::: CsiM Interpreted Compiled }
o Runtime || Time | Ratio || Time | Ratio
) boyer 9441.32 || 1313.54 7.2 122.06 | 428
".‘: browse 12125.03 || 1142.68 | 10.6 || 19.63 618
el ctak 488.61 94.65 5.2 1.56 313
* dderiv 1105.40 || 103.66 | 10.7 || 6.99| 158
f deriv 1192.60 | 116.65 | 10.2 || 5.96 | 200
e destructive || 2315.31 §| 244.35 9.5 2.18 | 1062
N div test-1 1406.86 || 207.71 6.8 || 2.63 535
div test-2 999.59 {{ 118.05 85 3.44 291
X stak 475.61 j 107.76 44| 6.09 78
N tak 433.87 65.67 6.6 || 0.53 818
::f takl 3230.16 || 582.13 55| 2.04 | 1583
N takr 456.09 66.67 6.8 | 0.72 633
e During these tests there was some variation in running conditions. Running time on the
:; Alliant gener~lly increases when several programs are executing simultaneously. This is
e probably due to contention for the cache, which is shared between its processors. This
.u' factor makes as much as a 10% difference, so the figures above should be taken as rough
N approximations.
In some of the tests there was a significant amount of garbage collection. Enough
W memory was allocated to limit the garbage collection to once every few seconds, but not so
:: much as to cause paging of the Lisp process.
. CsiM generally took 300 to 1000 times as long as the compiled version of the code it
) was interpreting, i.e., 5 to 15 minutes to simulate a second of compiled code.
I\ . . Sy g . .
C The comparison with thc Lucid interpreter shows much less variation in the speed ratio,
" reflecting the fact that CsiM and an ordinary interpreter do similar things with a program.
i
- 21
q

SSDARSOOONROREROUOLIDECUOUOL (SRAR RIS ONASCOOE K1 YA W M
Sl R s A Y DR AR I RSO A KA R XM ¢ 0 2 N ".D‘Z‘.\"ﬁ :ﬁ':‘ﬂ!ﬁ"‘a':‘t‘:'.':‘q"'ﬂ, ‘:‘""‘i"\'.?

-

.- -

In general. ('siam is about 5 to 10 times slower than the interpreter. which is a reasonable
price to pay lor the extra work that ('sia does to handle parallel programs.

Both Csinm and the Lucid interpreter spend a lot of time doing storage allocation and
garbage collection. The Lucid interpreter dynamically allocates lexical environments just
as ('siM does [13]. but it uses a stack for dvnamic binding and function calls. CsiM spends
much of its time creating lexical closures for use as continuations. It runs best when given a
lot of free storage. since this decreases the frequency of garbage collection. But the physical
memory of the machine provides a limit to the amount of useful storage we can allocate;
once this is exceeded and we start paging. performance drops tremendously.

Although these tests simulated only one processor. they are indicative of the times that
we get simulating parallel prograws, since none of the code to manage concurrency has been
removed. The time to simulate a parallel program is roughly proportional to the product of
the number of processors we are simulating and the parallel runtime, with the same ratio as
above, as long as most of the processors are doing useful work. Simulating idle processors
turns out to be more expensive than simulating processors running ordinary code, because
they are generally in a loop referencing memory (checking a queue for work to do), and each
such reference must be serialized as described in section 6.1. We could probably modify
CsiM to avoid this source of inefliciency, but the difference does not seem worth the effort
it would require,

9 A Parallel example

As an example of how CsiM is used, we will try to apply parallelism to the boyer benchmark.
Bayer {2, pp. 116--135] is a simple theorem prover that works by rewriting a formula into a
canonical form {a structure of nested if-expressions), and then applying a tautology checker
to the result.

Converting bover to a parallel program is mainly an exercise; it is unlikely that anyone

will want to use the result. This is because there are better «.gorithms to do what boyer

does, so it wonld pay to start from scratch and write a good parallel theorem prover. Still,
the case of parallelizing an existing sequential program is an important one, and we expect
to see it come up fairly often.

We begin with little knowledge of where the program spends its time. The first step,
therefore, is to siinulate it running as a sequential program on one processor and look at the
function timing statistics (section 4.6). Unfortunately, the benchmark as given takes too
much time and memory for casy experimentation; a single run through C'siM with statistics
gathering turned on takes about 20 hours and causes a large amount of paging. Therefore
we will modify it to create a faster test.

The top level of the program is a function called test, which first constructs a term by
calling

(apply-subst
(quote ((x f (plus (plus a b)
(plus c (zero))))
(y £ (times (times a b)
(plus c d)))
(z £ (reverse (append (append a b)

22

Y l 2 a¥h o' ¢ ’
W et ._*’a'.',a‘:.\\f&:»:ﬂ ML l!:‘i';‘.l:l’ﬂltt
M . N v, 0%

AR)' "f o) ‘N‘l:"&.‘ i 0,0

'I'q"’q :':l l"’. ‘A"

W Al aCaCaCRCRC N D ol fo b ol oA B b e e

" (ni1))))

f:;.‘ (u equal (plus a b)

“ (difference x y))

W (v lessp (remainder a b)

::: (member a (length b)))))

1:: (quote (implies (and (implies x y)

;.:) (and (implies y 2)

! (and (implies z u)

:,;. (implies u w))))
;:_:: (implies x w))))

:::: and then calls tautp, the main function of tl:e theorem prover. with this term. Our simpli-
::: fied test case uses instead the term

((apply-subst

‘ (quote ((x £ (plus (plus a b)

K (plus c (zero))))

> (y £ (times (times a b)

K (plus c d)))

® (z £ (reverse (append (append a b)

:‘: . (nil))))))

" (quote (implies (and (implies x y)

;.'. (implies y z))

::' (implies x z))))

",) Running this test through CsiM, we get three sets of function timing statistics. First,
2: for each function we have the amount of time spent just in that function:
0 ONE-WAY-UNIFY1 358379 36.5Y,

::' REWRITE-WITH-LEMMAS 145404 14.8),

o ONE-WAY-UNIFY1-LST 127357 13.0%

” REWRITE 115362 11.7Y

4 REWRITE-ARGS 91899 9.3,

o ONE-WAY-UNIFY 66324 6.7Y,

:.' ASSQ 49480 5.0

t APPLY-SUBST-LST 12504 1.3%

: APPLY-SUBST 10442 1.1Y

B

,hi

.:: Next, we have the time spent in each function including other functions that it calls:
"t

] TEST 983065 100.0},

’ TAUTP 982079 99.9Y%

“ REWRITE 976180 99.3Y

::: REWRITE-WITH-LEMMAS 973337 99.0%

Ky REWRITE-ARGS 972961 99.0J,

B ONE-WAY-UNIFY 635750 64.7!,

® ONE-WAY-UNIFY1 608115 61.9%

::: ONE-WAY-UNIFY1-LST 420197 42.7Y%,

N

& 23

SRR DS AR, (00 thh OLOOG Sy
Ve e ,g SN uﬂg’i NN FY“!C‘. \,‘,“‘g').““‘..l.' ..‘. l.g'& ..ql..lgl. i. "I '! |'l. ! T |‘l|l' "i"‘ﬂ‘ ..'l f l'g'l..

ISR W o) DO Q,.' ¥
. ."’ RO Mt ."“no,"!-%" IRRAARS "H“‘ ""‘“. “""ﬂ’ t”*a’ ;‘l' ot

ASSQ 179506 18.3Y%
APPLY-SUBST 38393 3.9
APPLY-SUBST-LST 37718 3.8Y
TAUTOLOGYP 5899 0.6

Finally, we have the average time per call to each function.

TEST 983065.0 (1 call)
TAUTP 982079.0 (1 call)
REWRITE 4083.7 (2595 calls)
TAUTOLOGYP 3038.5 (13 calls)
REWRITE-ARGS 2486.4 (4626 calls)
REWRITE-WITH-LEMMAS 907.2 (7559 calls)
APPLY-SUBST-LST 280.3 (494 calls)
APPLY-SUBST 231.2 (394 calls)
TRUEP 158.4 (24 calls)
ONE-WAY-UNIFY 115.0 (5527 calls)
FALSEP 110.4 (19 calls)
ASSQ 83.5 (2798 calls)
ONE-WAY-UNIFY1 73.0 (12951 calls)
ONE-WAY-UNIFY1-LST 72.0 (7513 calls)

From these statistics, we see that most of the time is spent in rewrite and one-way-unify
and their subsidiary functions. But the calls to one-way-unify are, on the average, much
smaller than calls to rewrite. This suggests that we should try to parallelize calls to
rewrite, since this will create processes of larger size and thus reduce the process creation
overhead. If this does not achieve enough speedup, we will look at calls to one-way-unify.

Notice that the first set of statistics, which is what ordinary “profiling” of the program
would produce, tells us that one-way-unify1l accounts for a large portion of the execution
time, but it does not tell us that calls to this function are parts of higher-level tasks. Thus,
it does not tell us as much about the places to look for effective use of parallelism as the
second set of statistics does.

Before we investigate rewrite, we must notice that boyer contains some uses of global
(special) variables that would cause improper sharing of data in parallel processes. One of
these is easy to fix: the variable temp-temp, declared special with a defvar at the beginning
of the program, is used only as a local temporary variable in the functions apply-subst and
one-way-unifyl. By removing the defvar and adding &aux temp-temp to the parameter
lists of these functions, we avoid the use of the global variable.

The other global variable, unify-subst, is a bit more difficult to deal with. It is used
in the following way:

(defun rewrite-with-lemmas (term lst)
(cond ((null 1lst)
term)
((one-way-unify term (cadr (car 1st)))
(rewrite (apply-subst unify-subst {(caddr (car 1st)))))
(t (rewrite-with-lemmas term (cdr 1st)))))

24

A 0 ‘ ’
OGS ’:'!’ B " "q"‘ .‘d."' :"'g’ ':’ ':"'q"';' s‘

A
" 'if.'n W

l.“'

i'ilﬁ

v-..

>

- e
- - - -

Y o T
e R S i)

Each call to one-way-unify sets unify-subst to NIL, and then incrementally modifies it (in
one-way-unifyt). When one-way-unify returns. unify-subst contains a list which is ref-
crenced by the code shown above, and then there are no further references. Since we are go-
ing to parallelize calls to rewrite, several processes may be running rewrite-with-lemmas
at the same time and they should not share the same global variable.

(CsiM’s definition of dynamic binding (see section 5.1) makes it possible to cstablish a
separate instance of unify-subst for each call to one-way-unify, as follows:

(defun rewrite-with-lemmas (term lst)
(let ((unify-subst nil))
(cond ((null 1lst)
term)
((one-way-unify term (cadr (car 1lst)))
(rewrite (apply-subst unify-subst (caddr (car 1st)))))
(t (rewrite-with-lemmas term (cdr 1st))))))

Recall that unify-subst is a special variable because of the defvar at the beginning of the
program. If rewrite-with-lemmas is called concurrently in different processes, they will
each perform a dynamic binding of unify-subst, which will be invisible to other processes
because each establishes a new dynamic environment. Thus, the references to unify-subst
in one-way-unify will not interfere with each other.

Having made these changes, we now proceed to examine rewrite and rewrite-args.

(defun rewrite (term)
(cond ((atom term)
term)
(t (rewrite-with-lemmas {(cons (car term)
(rewrite-args (cdr term)))
(get (car term)
(quote lemmas))))))

(defun rewrite-args (lst)
(cond ((null 1st)
nil)
(t (cons (rewrite (car 1lst))
(rewrite-args (cdr 1st))))))

The main potential for parallelism here is in rewrite-args, which performs independent
computations on each member of the list given as its argument. We can create a separate
process for each one of these. We can also use futures to return a value from rewrite-args
before these processes finish, which may add some more parallelism.

A single change to the function accomplishes this:

(defun rewrite-args (1lst)
(cond ((null 1lst)
nil)
(t (cons (future (rewrite (car 1lst)))
(rewrite-args (cdr 1lst))))))

25

1 Wk '!:::9:"" |\‘f" f l ‘,l I 0 | MK ‘|‘|‘l 3‘ |.| '.‘ 0,85

OO

\' K l' W LN 2, ¢ “

l . t 'y) q
.' 0“ . Q Q" "‘Q’. A'::‘.‘g l,\.“

0 ‘|

'l .‘0 ‘!

When we run the resulting program through Csim, we get the following results:®

of | Running | Speedup | Speedup | Useful Idle Other
Proc. | Time | vs. 1 proc. | vs. serial | Work | Overhead | Overhead
1 1367478 1.00 0.72 0.72 0.13 0.15
2 701366 1.94 1.40 0.70 0.15 0.15
3 491812 2.78 2.00 0.67 0.19 0.15
4 396999 3.44 2.48 0.62 0.22 0.16
5 346768 3.94 2.84 0.57 0.27 0.17
10 310896 4.40 3.16 0.32 0.50 0.18
15 315602 4.33 3.12 0.21 0.63 0.17
20 299398 4.57 3.28 0.16 0.68 0.15

CsiM provides the “running time” and “idle overhead” data, and we have computed the
other numbers in the table from these. Speedup versus one processor is the time for the
parallel program on one processor divided by the time on n processors. Speedup versus the
serial program is a more meaningful measure, since it accounts for overhead in the parallel
program that we must try to avoid. The serial program’s time is 983065 steps, as computed
in the earlier simulator run.

The last three columns show the fractions of processor time spent doing useful work and
overhead of various sorts. Useful work is the speedup vs. the serial time, divided by the
number of processors. This number stays well below 1.00 because of overhead in the parallel
program. For each future, the parallel program does extra work to create the future, to add
a process to the queue, to remove it when a processor becomes idle, and to reference data
indirectly through the future. The costs of future creation and adding processes are part
of the “other overhead” above. The costs of finding processes in the queue and removing
them are counted in “idle overhead.” Idle overhead also counts time spent waiting for the
lock on the queue, and time when there is no work for a processor to do.

Beyond about 10 processors, there is simply not enough work to keep all the processors
busy, and the idle overhead begins to climb rapidly, while the “other overhead” fraction
drops because the idle processors are not doing the operations that are charged to that
category.

This is just a first step; with further work on the program, we can try to minimize the
overhead of the parallelism we have added, and also find more parallel work as the number
of processors increases. The results presented in [12] continue this investigation.

10 Acknowledgements

The original Maclisp simulator for Qlisp [3], written by Dick Gabriel, provided a number
of ideas used in CsiM. Ramin Zabih suggested using a continuation passing interpreter as
the basis for CsiM. This considerably simplified its previous design.

Hiroshi Okuno, Dan Pehoushek, Arkady Rabinov and Igor Rivin served as guinea pigs
and users of CsiMm and have contributed many useful ideas and improvements. Carolyn

®CSIMs default LIFO scheduler was used for these tests. Different results would be obtained using the
FIT'O scheduler, or if we changed FUTURE to DFUTURE. This is mainly because a reference to an undetermined
future canses cxtra overhead, and the order in which processes are scheduled decides whether the values of
futures are computed by the time they are referenced.

26

; ' () ' ' .

"

?
"W "'

‘Qih.l.

" ..(

‘| ‘1"'0' L0 l..‘t v,

UOUKY)
t'o My ¥
|'|'|

\l:|

(WY
:‘*'t“

"1::'1 Talcott provided comments on several drafts of this paper, as did some of the people named
;;i’;: above.

:.'..l;
?

wal References

Ya

Al

::,::' (1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpre-
1;::0; . tation of Computer Programs. MIT Press, Cambridge, Massachusetts, 1985.

LA |

".;?.. [2] Richard P. Gabriel. Performance and Evaluation of Lisp Systems. Computer Systems
i:y"': ’ Series, MIT Press, Cammbridge, Massachusetts, 1985.

'0"“!
':::':' [3] Richard P. Gabriel and John McCarthy. Queue-based multiprocessing Lisp. In Con-
::::: ference Record of the 1984 ACM Symposium on Lisp and Functional Programming,
4 pages 25-44, Austin, Texas, August 1984.
_:::"'. (4] Michael J. C. Gordon. The Denotational Description of Programming Languages.
:::E‘.: Springer-Verlag, New York, 1979.
;|.‘ "

,:.'}:‘ (5] Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
"' Transactions on Programming Languages and Systems, 7(4):501-538, October 1985.
T
:'$ (6] David Jefferson. Virtual time. ACM Transactions on Programming Languages and
‘:::l Systems, 7(3), July 1985.
A
:::.l': (7] James S. Miller. MultiScheme: A Parallel Processing System Based on MIT Scheme.
. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, August
\ g g 8
R 1987.

'...'

E:::' (8] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Burlington, Mas-
!:::l' sachusetts, 1984.

v

K

) (9] Guy L. Steele Jr. and Gerald J. Sussman. LAMBDA: The Ultimate Imperative. Al
Gl Memo 353, MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts, March
;:;!;:' 1976.
] .'0 '

;::,. [10] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
RN Language Theory. MIT Press, Cambridge, Massachusetts, 1977.

e [11] Mitchell Wand. Continuation based multiprocessing. In Conference Record of the 1980
::::c:' LISP Conference, Stanford, California, August 1980.
KA -

::'o:: (12] Joseph S. Weening. Parallel Ezecution of Lisp Programs. PhD thesis, Stanford Uni-
Y versity, Stanford, California. In preparation.

o
A;;:i' [13] Jon L. White. Personal communication.
:‘:‘.
Yy

\
"
IR

i.g‘:

KW

,‘X:': 27

o

®

D RS A L e R DTS TR TN T T Ry Rt D e LSy O OO0 A AN NRHEN QOO '
e g Bt ‘-\'~.‘;’v':,.’.\‘?"r:'-.‘-»!’JA.';‘!'.’»‘!'h‘«h"'ﬂ..‘i‘:*s‘!%‘f’b‘!h’!‘n‘th‘!’»‘!-'A‘!'t"‘»'!' RNDMTAIROCONN DGO SO WY

. VT TR W TR WY EON R I W TV S ST S WA Y W O

()
OO
i
c"‘o"’o
ok
@
i RO
e Pty
l‘l'x ." .. J
1 te hs
;.l’ .‘:""
»‘:.j f
DX ¢
™ L) .'. O
" RN
v N
vy ("
0a e
54 \
N *) .:::
'§
:‘!' ghntey
gh i
3 %ty
nt ’
L ‘ " -ﬁ
el "
“I d O
hy (%00
;:0‘; z“:n.. .9'.‘
) ‘.. 0 U
A Pttt

[\
o et
;’(!. g :'A_“l
AR, -
\. *! \
a’:'l‘ :‘
‘Q'l.l MOOON
N} 0. l” !
x..v N O Ol
| 9:0‘ |,l.|.0.q.
57"" ¢ ’.. ".(
X fal vy
Htnt
®
R LA,

Wy \ ‘:“:
‘;,F.. ' 30 ‘:’
,“,'t. '::.':‘!..
';’ 3, ':' ."l‘
3‘. Q.) ':ﬂ ..

O Wt
RN il
% o
‘;i’::a ; n‘::'.'::..:
i : ::-,3::;:;:;
gty
i i
Aot]

1::’“ " 'w
::a,:' "‘ ':. 't
n':'!‘ ..
2 /

GO OBOGD

"y nt c,
o .".'.'s,"
= o
'i’:': ':.: b
:.' ‘:! N !.!'e‘

-
oy’

ER YRRy
e o

(\ «Q
=2
O KO

o

Cx

=
-
:
2%
=,

o o ® L ’ | J . . .

SRR BANEOASORD 'l'.“ Q"\" .' "'.’ YA‘ Y T oA AN W "" “V .'

[\.y\ l-ﬂ. Q' ‘. " l' O . ' ' .¢“ “’ '.‘ "\ "‘ l l ‘

DEIAINIANS "' ": Ao ot “:’ “".’m’. ""' R s \‘55 XY 't"”ﬁ ‘§ “;::{ “ 'u“" | e k ‘:".
U0 ‘

' %) s’u
Sy .‘p.‘)«’. 5‘,‘., ..’0"4 ,.i .’ 3~~ i ‘ ’)s'ﬁ. ‘I' ‘..‘ '\‘! K
X W uo'h g OO WY HABR) Nn" Dﬂ'uw

. p;l!
e,l Q\(ﬂ y "");t ‘

5 L
‘v\n‘.

